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This  paper  reports  a computational  approach  for  analysis  of  FTIR  spectra  where  peaks  are  detected,
assigned  and  matched  across  samples  to produce  a peak  table  with  rows  corresponding  to samples  and
columns  to variables.  The  algorithm  is applied  on  a dataset  of  103 spectra  of  a  broad  range  of  edible
oils  for  exploratory  analysis  and  variable  selection  using  Self  Organising  Maps  (SOMs)  and  t-statistics,
respectively.  Analysis  on the resultant  peak  table  allows  the  underlying  patterns  and  the  discrimina-
tory  variables  to be  revealed.  The  algorithm  is user-friendly;  it involves  a minimal  number  of  tunable
eywords:
ourier Transform Infrared
eak  detection
eak  assignment
eak  matching

parameters  and  would  be useful  for analysis  of  a  large  and  complicated  FTIR  dataset.
© 2011 Elsevier B.V. All rights reserved.
dible oils

. Introduction

Fourier Transform Infrared (FTIR) is a form of vibrational spec-
roscopy where infrared radiation is passed through a sample
esulting in absorption of the radiation that stimulates vibrational
otions. Fundamentally, a molecule is represented by a set of flexi-

le and moving atoms where the atoms constantly oscillate around
verage positions. When the vibration of the atoms produces an
scillating electric field same as the frequency of the IR radiation, it
ives rise to peaks (often referred to as bands) in vibrational spec-
rum. Each spectral peak is characterised by its frequencies and
mplitude as a molecule only absorbs at frequencies corresponding
o its molecular modes of vibration in the infrared region [1].

FTIR  has been widely used as a routine diagnostic tool for quali-
ative and quantitative analyses. The major advantages of FTIR over
ther analytical methods are it is relatively fast, non-destructive
nd cost effective; in addition, only a small amount of sample is
equired [2]. FTIR in combination with various multivariate data
nalysis methods have allowed rapid evaluation of a large volume
f spectral data for quality control [3], quantification [4] and
attern recognition [5–7]. Typically, this involves the profile of the

ntire spectrum or specific spectral regions containing relevant
nformation [8]. In this paper, we report an automated computa-
ional approach for analysis of FTIR spectra and demonstrate the

∗ Corresponding author. Tel.: +60 82 582995; fax: +60 82 583160.
E-mail  addresses: sfsim@frst.unimas.my,  siongfong@gmail.com (S.F. Sim).

039-9140/$ – see front matter ©  2011 Elsevier B.V. All rights reserved.
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algorithm for the analysis of edible oils. Fundamentally, the algo-
rithm finds peaks present in each sample and matches the peaks
across samples to produce a peak table with rows corresponding
to samples and columns to variables for multivariate data anal-
yses. The algorithm is also designed to assign peaks according to
frequencies suggesting the possible functional groups. This would
speed up the peak assignment process which is often performed
manually and serves as a guide for non-expert users in spectra
interpretation. In fact, many automated data processing algo-
rithms have been developed for various applications, i.e., GC–MS
[9], GC–DMS [10], GC–GC [11], LC–MS [12], NMR  [13] and HPLC
[14]. They have been used for microbial, metabolomics and food
study [15–20]. The method is particularly well-accepted when the
data processing software available with the workstation can no
longer cater the demand of the analyst, i.e., he/she wishes to look
at hundreds of peaks in a complex matrix and compare the peaks
across multiple samples. Hence, the algorithm offers an alternative
to analyse large high dimensional FTIR datasets when interpreting
complicated superimposed spectra becomes infeasible and peak
integration becomes tedious and time consuming.

2. Materials and methods

2.1.  Dataset
This dataset consists of 103 FTIR spectra of 8 types and 16 brands
of edible oils. The samples represent a broad range of edible oils
from olein palm oil, blended palm oil (consists of olein palm oil,
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Table  1
The  number of samples according to types and brands.

Type Brand No. of samples

Olein palm oil A 15
B 3
C 3
D 5
E 5
F 6

Blended cooking oil (olein palm oil,
peanut and grains)

G 15
H 3
I 3

Sesame oil J 6
Sunflower oil K 6

L 6
Sunflower and canola oil M 9
Corn oil N 6
Coconut oil O 6
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Canola oil P 6

TOTAL 103

eanut oil and grain oil), sesame oil, sunflower oil, blended sun-
ower oil (consists of sunflower and canola oil), corn oil, coconut
il and canola oil. The number of samples according to types and
rands are summarised in Table 1. The brands are labelled as A to
; these products are commonly available in the local retail market
xcept brand O (O is the homemade crude coconut oil). The sam-
les were obtained from different households and were analysed
andomly using ATR-FTIR.

.2.  Instrumentation

All  spectra were obtained using a ThermoScientific FTIR spec-
rometer equipped with a removable ZnSe crystal controlled by
MNIC software (Thermo Nicolet Analytical Instruments, Madi-

on, WI). An ATR-accessory was used with all spectra collected by
o-addition of 32 scans at a resolution of 4 cm−1 in the range of
000–650 cm−1. The spectrum of each sample was  ratioed against

 fresh background spectrum recorded from the bare ATR crystal.
rior to collection of each background spectrum, the ATR crystal
as cleaned with acetone to remove any residual.

.3. Data analysis

.3.1.  Peak detection
The  spectra in CSV format were converted to Matlab version

.8 (The Mathworks, Inc., Natick, MA), each spectrum was  repre-
ented as a vector of dimensions (6949 × 1) with a scanning rate
f 0.482 cm−1. The spectrum was baseline corrected using asym-
etric least squares [21] prior to peak detection. Note that the

lgorithm is developed in-house in Matlab. The baseline corrected
pectrum was first de-noised using soft heuristic thresholding and
caled noise option at level 4 by sym8 wavelet [22]. The first deriva-
ive of the smoothed spectrum and the average absolute change of
erivative over the frequencies, h, were then computed.

Based on the first derivative of the signal, the peak start,
eak maxima and peak end are located according to the criteria
escribed elsewhere [9–11]. Briefly, a peak start is recognised when
he value of the first derivative is greater than 0 and is f times (where

 refers to the noise factor) more than the calculated h. In this paper,
he peak noise factor, f, is set at 3. The centre of the peak is iden-
ified at the zero-crossing point in the derivative where the signal
rosses the x-axis going from positive to negative and the peak end

s determined when the derivative of two subsequent points are
bove zero. Peaks that are too small, with a window of less than 20
cans (9.64 cm−1), are rejected. This parameter is referred to as the
eak filtering window, w. The peak area is calculated as the sum
88 (2012) 537– 543

of  all wavenumbers contributing to the peak. These are the typical
criteria of peak detection; they are generally employed elsewhere
yielding a promising efficiency (often with a correlation coefficient
greater than 0.90) [9,10,14] therefore, in this paper, the efficiency
of the peak detection algorithm will not be re-examined. The algo-
rithm is also designed to allow characterisation of a peak whether
it is a strong, medium or a weak peak according to the ratio of the
intensity of the peak to the strongest peak. If the ratio is greater
than 0.65, it is labelled as a strong peak; if the ratio falls between
0.35 and 0.65, it is a medium peak, otherwise a weak peak. Note
that the value of the ratio ranges between 0 and 1. The algorithm
reports the peaks detected in every individual sample including the
positions (peak start, peak maxima, peak end), the peak area and
peak characteristics.

2.3.2. Peak assignment
Peak  assignment process can become tedious and time consum-

ing when one is involved with a large number of samples consisting
of many peaks. Fundamentally, a number of functional groups could
possibly be associated to a peak found within a distinguished fre-
quency range; Williams and Fleming [23] spent almost the entire
chapter of the infrared method in their book describing the charac-
teristic absorption frequencies of organic functional groups. It may
not be too challenging for an expert user to identify the relevant
functional groups if the number of samples is manageable. For a
non-expert user, this can be difficult so the automated peak assign-
ment algorithm can be used to improve the spectral interpretation
process.

A database consisting of 168 peaks is created according to the
group frequencies described in Williams and Fleming [23]; every
peak is characterised by its frequency range, peak characteristic,
i.e., strong, medium, weak and its corresponding functional group.
For every peak detected, the algorithm would search through
the library for the possible functional groups according to the
frequency. If a peak is found within the frequency range of a docu-
mented functional group, the peak is assigned to the group. Peaks
that cannot be assigned are denoted undefined. The algorithm
yields a peak assignment table with possible functional groups des-
ignated to each peak. Note that a peak can be assigned to more
than one functional group as the frequency range of several groups
might have overlapped; for example, a peak at 3003 cm−1 has been
assigned to three groups ( CH stretching, CH stretching of CO–CH3
and intramolecular H bonded –OH), an analyst is required to inter-
pret the peak according to prior knowledge on the sample and peak
characteristics. In the peak assignment process, the peak character-
istic is not taken into consideration although it can be an important
criterion. This is because the peak characteristic often depends on
the quality of the spectra for example, a poor sampling technique
may result in changes in the entire absorption band distribution
[24]. This could jeopardize the consistency of the peak assignment
algorithm.

2.3.3. Peak matching
The  peak matching algorithm is designed to match peaks across

multiple samples producing a peak table (N × M) with rows corre-
sponding to samples and columns to variables. Peaks detected are
compared across samples; when a peak is examined, it is referred
to as a target peak. The potential matching peaks are identified
based on the peak matching window, defined as ±z scan number
of the target peak where z is the tolerance. If a target peak is found
at b scan number, the peak matching window ranges between
(b + z) and (b − z). If no peaks are found matching the target peak,

the target peak is identified as a unique peak. If more than one
candidate matching peak is found in a sample, the candidate with
its frequency closest to the target peak is chosen as the matching
peak. Generally, the efficiency of the peak matching algorithm
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used for various multivariate data analyses. In this paper, we
employ SOMs, a non-linear and unsupervised approach, to inter-
pret the underlying patterns of the data. Fig. 3(a) illustrates the
trained SOM of edible oils according to types where letters ‘A to P’

A
bs

Olein palm oil      

Blended palm oil    

Sesame              

Sunflower           

Sunflower and Canola

Corn                

Coconut             

Canola              
S.F. Sim, W.  Ting / Ta

s governed by the peak matching window. If the window is too
arge, there is a greater chance of mismatching; if the window is
oo small, peaks are failed to be matched. In this paper, the peak

atching window is set at ±8 scans (±3.856 cm−1) yielding a
eak table of dimensions (103 × 46). The parameters are often set
ccording to user’s experience. In this case, we evaluate the peak
ables obtained using various settings of peak noise threshold and
eak filtering window, the parameters are chosen when all observ-
ble peaks are detected with a minimal number of small peaks
possibly noise). For the peak matching window, we select the
arameter that matches the peaks across samples appropriately.
or example, a peak table indicates the presence of two variables at
852 and 2853 cm−1; these two peaks are possibly corresponding
o the same functional group but have been identified as two
ifferent compounds suggesting inappropriate matching window
ize. For FTIR, the suitable peak matching window is very much
epending on the application of the users. Sometimes, a small shift
ay  indicate important information; for example in the study of

ooking oil, an absorbance shift from 3003 to 3008 cm−1 implies
n increase in oleic acid content. Therefore to find an appropriate
indow size, one is suggested to evaluate the peak table generated
sing different windows and determine the efficiency of the peak
able, i.e., minimal mismatching and suspicious unmatched unique
eaks which will be revealed on the peak assignment table.

.4.  Multivariate analysis

.4.1.  Preprocessing
The  peak table was square rooted and standardised prior to

ultivariate data analyses. Square-rooting aims at reducing the
nfluence of outlier measurements and standardisation ensures all
eaks are weighed equally and on the same scale [25].

.4.2.  Self Organising Maps
Self  Organising Maps (SOMs) is used to explore the underlying

atterns of the dataset. The algorithm of SOM is described else-
here [25–27]. Briefly, a map  with predefined dimensions (R × S)

s initialised; the map  consists of a total of U units (R × S = U), each
haracterised by a (1 × M) weight vector where the weight vector
f each variable m is chosen randomly from a uniform distribution
ithin the observed range of variable m. A sample is chosen ran-
omly where the input pattern is compared to the weight vector of
ach map  unit based on Euclidean distance. The most similar map
nit is regarded as the best matching unit; the algorithm will update
he weight vector of the best matching unit and its neighbouring
nits. This process is repeated for T iterations [25]. In this paper,
e use a rectangular map  with 300 hexagonal units of dimensions

15 × 20 = R × S); they are trained for 5000 iterations with a learning
ate of 0.1. The interpretation of a SOM is similar to the score plot of
rincipal Component Analysis (PCA); similar samples are mapped
lose to each other and dissimilar apart.

.4.3. t-Statistic
t-Statistic is employed to identify the discriminatory variables.

t is a variable selection method used for comparison involving two
lasses; t-statistic evaluates whether the means for two classes are
tatistically different. The t-value for each variable, m is calculated
ccording to the following equation [25].

m = x̄mA − x̄mB

Sm

√
(1/nA) + (1/nB)
¯mA and x̄mB are the mean of each variable calculated for class A
nd B. Sm is the pooled standard deviation for each variable over
he two classes. nA, nB are the number of samples in class A and B.
88 (2012) 537– 543 539

In  this paper, t-statistic is performed on one-versus-all compar-
isons; if there are eight classes, the comparison is between class
1 and the rest, class 2 and the rest, class 3 and the rest, etc. for
all classes. For each comparison, the variables are ranked accord-
ing to the absolute t values; the variable with the highest t value
is the most significant variable. The top 10 significant variables
of each class are selected where the overall t-values of the vari-
ables are recalculated as the average of the t-values obtained over
one-versus-all comparisons. For example, a variable is selected as
the top 10 significant variables in 4 classes with t-values 2.8, 3.6,
5.5 and 4.2, respectively; the overall t-value is therefore 4.025
((2.8 + 3.6 + 5.5 + 4.2)/4). The selected variables are then ranked
according to the overall t-values. The rationale of this approach is to
numerically reflect the contributions of the highly ranked variables
over all comparisons.

3.  Results and discussion

3.1.  FTIR spectra

The  FTIR spectra of eight different types of edible oils are
plotted in Fig. 1; apparently, they appear very similar and one
cannot easily interpret the differences between them. Generally,
there are several large and consistent peaks at 2922, 2852, 1742,
1461, 1375, 1160 and 721 cm−1. The spectra were subjected to
the peak detection and matching algorithm (z = ±8 scans) yield-
ing a peak table of dimensions (103 × 46). Fig. 2 shows the unique
and matching peaks identified across samples in three spectral
regions (3000–2750 cm−1, 1800–1590 cm−1 and 1500–650 cm−1).
The resultant peak table was  subjected to the peak assignment algo-
rithm where each variable is designated to the possible functional
groups. Table 2 summarises the major peaks found in the spectra
of edible oils and the corresponding functional groups.

3.2.  Self Organising Maps

Similar features are observed in the spectra of various types
of edible oils; it is hard to deduce the differences between them
manually. The peak table generated from the algorithm can be
4000 3518 3036 2554 2072 1590 1107

Wavenumber(cm-1)

Fig. 1. The spectra of 103 samples of edible oils according to types.
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Fig. 2. Peaks identified in three specific regions (3000–2750 cm−1, 1800–1590 cm−1 and
automated approach.

Table  2
The  major peaks found in the spectra of edible oils and the corresponding functional
groups.

Wavenumber (cm−1) Peak assignment Intensity

3003 CH stretching (sym) Weak
2955, 2922 CH stretching (asym) Strong
2852 CH stretching (sym) Strong
1742 Ester C O stretching of the

triglycerides
Medium

1712 C O, free fatty acid shoulder Weak
1650 C C stretching, cis RHC CHR Weak
1461 CH deformation (CH2, CH3) Weak
1415 Rocking of C–H bending, cis

RHC  CHR
Weak

1158  Bending of CH2 groups Medium
1238, 1377 Bending of CH2 groups Weak
1027, 1062, 1095, 1110,1118 C–O stretching Weak
958 C C bending, trans RHC CHR Weak

i
c
o
a
t
o

721 C–H out-of-plane deformation Medium
658, 912 C–H out-of-plane deformation Weak

ndicate the brands (refer to Table 1). Noticeably, blended palm oil
onsisting partly of palm oil shares the same cluster as the pure

lein palm oil. The sunflower oil, corn oil, blended sunflower oil
nd canola oil on the other hand are mapped closely on the map;
his suggests similar characteristics between them. The sesame
il and crude coconut oil are independently distinguishable. To

Fig. 3. (a) The trained SOM of edible oils using the peak table; an
 1500–650 cm−1). The dashing lines are the unique and matching found using the

verify the peak detection and matching algorithm has retrieved
the correct information from the spectrum profile, we  compare
the trained SOM generated using the peak table (Fig. 3(a)) with the
trained SOM produced based on the entire profile (Fig. 3(b)). Note
that the matrix involving the entire spectrum profile is reasonably
large (103 × 6949 = No. of samples × wavenumbers) therefore the
training of SOM is computationally more intensive. The clustering
patterns of SOMs produced using both approaches are comparable
indicating the reliability of the algorithm.

3.3. Variable selection

The  discriminatory variables responsible for differences
between spectrum profiles can be distinctively suggested by
forming a peak table. In this paper, t-statistic is used to suggest
the discriminatory variables; Fig. 4 illustrates the distribution
of the discriminatory variables and the corresponding spectral
regions (the discriminatory variables are marked with dashed
lines). Generally, they can be grouped to represent three main
functional groups, C O, C–O stretching and double bonds. The
peak at 1712 cm−1, an indicative of the presence of free fatty acids,

is distinctively observed in the crude coconut oil. This is likely
because the coconut oil is unrefined (homemade) and it is common
that unrefined oil contains some free fatty acids; the levels of free
fatty acid will be reduced in refining [28]. Peaks corresponding to

d (b) the trained SOM of edible oils using the entire profile.
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Fig. 4. The distributions of the discriminatory

–O stretching of ester groups at 1095, 1110 and 1118 cm−1 are
nvariably found across samples. This vibration consists of two
symmetric coupled vibrations C–C( O)–O and O–C–C with the
ormer being more important [29,30]. As observed, the peak at
095 cm−1 is detected in almost all samples except the coconut oil.
he peak at 1110 cm−1 however is predominantly found in palm
il and coconut oil (saturated oil), this peak is shifted to higher
avenumber at 1118 cm−1 in sesame oil. Peaks corresponding

o unsaturation at 3003, 1650, 958 and 721 cm−1 also exhibit
oticeable variations across samples. They have been assigned to
C–H stretching of cis RHC CHR and methylene rocking vibration
f straight chain paraffins with the out of plane vibration of
is-disubstituted olefins. The observed variation (as shown in
ig. 4) reflects the fatty acid compositions of various edible oils.
ypically, palm oil contains higher amount of saturated fatty acids,
ure sunflower oil contains higher amount of polyunsaturated
atty acids whilst canola oil is richer in monounsaturated fatty
cids [8]. This observation is corroborated by the fatty acid com-

ositions suggested elsewhere; Table 3 summarises the fatty acid
ompositions of some common edible oils reported in Ref. [31].
he unsaturation percentage decreases in the following order:
unflower oil, corn oil, sesame oil, canola oil, palm oil and coconut

able 3
he  typical fatty acid compositions of some common edible oils (reported in [31]).

Saturated fatty acids (SFA) Monounsa

Olein palm oil 45.3 41.6 

Sesame  14.0 42.0 

Sunflower 11.9  20.2 

Corn  12.7 24.7 

Coconut 85.2  6.6 

Canola  5.3 54.3 
bles and the corresponding spectral regions.

oil;  this explains the observed absorbance values of peaks at 3003,
1650, 958 and 721 cm−1. Sunflower oil with a larger proportion of
polyunsaturated groups has higher absorbance values than those
with a lower amount. A weak absorption band at 958 cm−1 is
found in almost all edible oils except the coconut oil. This peak is
attributed to the presence of trans-olefins where polyunsaturated
and monounsaturated oil, i.e., sunflower and canola oil indicate
higher intensities; the trans-olefins may  be produced during the
heating of oils in the purification process [32].

The spectral interpretation of FTIR can be very sensitive to peak
shifting; peaks occurring at very close wavenumbers may provide
important information for example, a peak at 3009 cm−1 was found
in the spectra of vegetable oils but for extra virgin olive oil, the peak
was shifted to 3005 cm−1. This indicates extra virgin olive oil con-
tains higher proportion of oleic acyl groups whilst vegetable oils
are richer in linoleic acyl groups [33,34]. To illustrate the ability of
the algorithm in retrieving information relating to peak shifting,
we reduce the peak matching window, z, to ± 5 scans (2.41 cm−1).

The resultant peak table was  subjected to SOMs; no significant dif-
ferences were observed between SOMs produced using the peak
matching parameter of z = ±5 (SOM not shown) and z = ±8. With
a lower peak matching parameter, two  different peaks with fairly

turated fatty acids (MUFA) Polyunsaturated fatty acids (PUFA)

8.3
45.0
63.0
57.8

1.7
24.8
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Fig. 5. The peak shift e

lose wavenumbers at 3008 and 3003 cm−1 are identified (Fig. 5).
unflower, blended sunflower, corn oil and sesame oil show a
aximum absorbance at 3008 cm−1; the absorbance is shifted to

003 cm−1 for palm oil, blended palm oil and canola oil. This sug-
ests that sunflower oil, corn oil and sesame oil contain a lower
ercentage of oleic acid followed by canola oil and palm oil [33].

.  Conclusion

The algorithm is implemented for the analysis of edible oils;
he information extracted agrees well with the observations pub-
ished elsewhere [6,8,32–36]. In addition, when the peak detection

ethod is compared to the full spectrum approach using SOMs,
imilar inferences are drawn. This automated algorithm is user-
riendly; it involves a minimal number of tunable parameters (peak
oise factor, peak filtering window and peak matching window)
herefore it can be easily dealt with by non-expert users. Expert
sers who wish to mine the information relating to peak shifting
an carefully reduce the size of peak matching window. On the
ther hand, if one is looking at contaminants which often appear
s small peaks, the peak noise factor and peak filtering window
an be set to a lower value. The algorithm extracts information by
orming a peak table; this allows specific peaks to be identified. It is
n advantageous feature of peak detection methods over the entire
rofile.

The computational approach for analysis instrumental output
s not a new subject; it has been employed in other applications
owever it is largely unexplored in FTIR. FTIR is known to be a
apid technique; we could easily collect spectra of hundreds of
amples rendering manual spectral interpretation infeasible. The
utomated algorithm would close the gap between the rate at
hich spectra data is generated and the rate it can be understood.

his algorithm would complement the advantage of FTIR as a rapid
echnique for routine chemical analysis especially when a large
ataset is involved. Nevertheless, it is important to note that the
utomated peak detection method is not always perfect as it is

arameter dependent. For example, if the peak noise threshold is
et too high, small peaks could possibly be missed; if it is set too
ow, undesirable peaks attributable to noise will be identified as
ignals.

[

[
[
[
[

cm-1

tered at ∼3003 cm−1.
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